fuzzy
fuzzyCmeans(X, max_cluster=10, m=2, error=1e-06, maxiter=1000, init=None, metric=‘euclidean’, output=’./’, processes=1, verbose=False)
Fuzzy C-Means clustering function. Iteratively test and report statistics on multiple number of clusters. Based on documentation found here : https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html
Parameters
X : Numpy array with data to cluster (Subject x Features).
max_cluster : Maximum number of clusters to fit a model for. Defaults to 10.
m : Exponentiation value to apply on the membership function. Defaults to 2.
error : Stopping criterion. Defaults to 1E-6.
maxiter : Maximum iteration value. Defaults to 1000.
init : Initial fuzzy c-partitioned matrix. Defaults to None.
metric : Distance metric to use to compute intra/inter subjects/clusters distance. Defaults to euclidean.
output : Output folder to save the visualization. Defaults to “./”.
processes : Number of processes to use. Defaults to 1.
verbose : If true, produce verbose output. Defaults to False.
Returns
cntr : Cluster centroids array.
u : Membership array.
wss : Within-cluster Sum of Square Error.
fpc : Fuzzy partition coefficient.
ss : Silhouette Coefficient Score.
chi : Calinski-Harabasz Index.
dbi : Davies-Bouldin Index.
gap : GAP statistic.
sk : GAP standard error.